

ROTORCRAFT TECHNOLOGY FOR HALE AEROELASTIC ANALYSIS

Larry Young
Wayne Johnson
NASA Ames Research Center

HALE Non-Linear Aeroelastic Tools Workshop Alexandria, Virginia September 2008

Objective of Presentation

- Describe state-of-the-art of rotorcraft technology applicable to aeroelastic analysis of a class of high-altitude long-endurance aircraft
- Analysis requirements
 - •Stability, structural loads, aerodynamic loads, performance, flight dynamics, controls
 - Design conditions, maneuvers, atmospheric turbulence

HALE Configuration Considered

- High aspect-ratio wing
 - Light, flexible structure
 - Low dynamic pressure, low Reynolds number
- Propellers
 - Light structure
 - Flexible mounting to wing
- Aerodynamic surfaces attached to wing
- Nacelles and pods
 - Significant fraction of wing weight

Operational Environment

	Helicopter	Tiltrotor	μ UAV	HALE	
Altitude	SLS	20k	SLS	SLS	100k
Density	1.	.53	1.	1.	.014
Speed of sound	1.	.93	1.	1.	.89
Kinematic viscosity	1.	1/.53	1.	1.	1/.017
Flight speed	180 kt	250 kt	10 kt	20 kt	170 kt
Mach number	.27	.41	.02	.03	.29
Dynamic pressure	110	113	.3	1.4	1.4
Re (/ft)	1,935,000	1,610,000	108,000	215,000	30,000
Prop/Rotor V _{tip}	700	600	50	75	640
V/V _{tip}	.43	.70	.34	.45	.45
Max M	.90	.71	.04	.07	.71
Re (/ft)	4,450,000	2,290,000	318,000	477,000	68,000

rotorcraft aerodynamic environment —

high subsonic to transonic rotor speed low to moderate Reynolds number

these are HALE operating conditions for which rotorcraft technology and tools may be applicable

Structures

- Multibody dynamics + nonlinear finite elements
 - Model wings, propellers, control mechanisms
 - Johnson (1994), Bauchau (1995), Saberi (2004)

Beams

- Model slender structures
- Exact kinematics (small strain)
- Isotropic and composite, closed and open sections
- Hodges (1990), Bauchau and Hong (1988), Smith and Chopra (1993), Yuan, Friedmann, and Venkatesan (1992), Johnson (1998)
- Can handle large, arbitrary deflections
- Coupled propeller and wing/airframe dynamics
- Geometric, structural, and inertial nonlinearities

- Aerodynamics
 - Lifting-line theory
 - Model high aspect-ratio wings and propeller blades
 - Two-dimensional airfoil tables (steady, compressible, viscous)
 - + vortex wake model
 - Johnson (1986, 1990, 1998)
 - Free wake geometry
 - Self-induced distortion of wake
 - Wing and propeller in cruise, static propeller thrust, wing/prop interaction
 - Scully (1975), Bliss, Quackenbush, and Bilanin (1983), Bagai and Leishman (1994), Johnson (1995), Bhagwhat and Leishman (2000)
 - Wake formation and rollup
 - Models of rollup and vortex core
 - Can handle arbitrary planform
 - Coupled propeller and wing/airframe aerodynamics
 - Nonlinear geometry, dynamic stall

- Aerodynamics (continued)
 - Unsteady aerodynamics compressible thin airfoil theory
 - Classical; Johnson (1980)
 - With trailing edge flap; Kussner and Schwartz (1941), Theodorsen and Garrick (1942)
 - ONERA EDLIN; Petot (1990)
 - Leishman and Beddoes; Leishman (1988), Hariharan and Leishman (1996)
 - Unsteady aerodynamics dynamic stall
 - ONERA EDLIN; Petot (1990), Peters (1985)
 - Leishman and Beddoes (1989, 1986)
 - Computational Fluid Dynamics
 - Coupled CFD/CSD RANS, time integration
 - For aeroelastic problems involving transonic/supersonic flows
 - Actuator disk model for propeller
 - 2D airfoil design and analysis
 - Euler + boundary layer
 - RANS

- Solution procedures
 - Steady state flight
 - Periodic, nonlinear aerodynamics and structure
 - Response to turbulence and maneuvers
 - Time-integration solution
- Linear state-space models
 - For stability, control design, aeroservoelasticity, flight dynamics
 - Including whirl flutter
 - Linearized about steady state flight
 - Coupled airframe and propeller dynamics (multi-blade coordinates)
 - Floquet theory for 2-bladed propellers (state equations periodic, not timeinvariant)
- Tools for handling qualities assessment and control law design
 - CIFER, CONDUIT, RIPTIDE identification, optimization, simulation

Rotorcraft Technology Embodied in Tools

- Verification and validation has been for rotorcraft little application of tools to HALE configurations
 - Test data required for HALE configurations of interest
 - Followed by correlation and perhaps further development of tools
- Then will have confidence in application of tools to design
 - Or at least know what additional testing needed
- Limited number of practitioners in community
 - Significant investment required to learn technology, and learn how to use rotorcraft tools
- Comprehensive analysis level of technology (beam + lifting line) can be used in iterative design process
 - CFD applications to complete configuration require major resources, hence limited role in iterative design

Edge of State-of-the-Art in Rotorcraft Technology

- Still developing theory, methods, applications for
 - Maneuver loads
 - Transonic aeroelastic stability
 - Dynamic stall
 - Unsteady aero of wing/prop interaction in linearized models
 - RANS CFD for performance, structural loads, stability
- Not in typical rotorcraft problems
 - Thermal effects
 - Membrane buckling

Rotorcraft Experience Regarding Testing

- Based on rotorcraft experience, what testing can do and should do
- Scale: Helicopter community accepts 20% scale (or larger) model testing of rotors, for performance and loads data in support of design and development
 - At 20–25% scale, this experience shows there will be scaling compromises that limit modeling fidelity sufficient to affect measurements
 - Geometric: Typically compromises in hub and blade root geometry
 - Reynolds: 30-50% more profile power, similar magnitude reduction in maximum lift coefficient
 - Dynamics: Typically hub weight, root stiffness, control system stiffness not matched
 - Mechanical: Typically lag damping not correct, structural shapes not same, often compromises of load path
 - Experience has provided industry the knowledge needed to extrapolate the data to full scale, including allowance for scaling deficiencies for conventional rotors in conventional operating regimes
- Wind tunnel tests recommended from rotorcraft experience
 - For performance: propeller only
 - For stability and control: propeller(s) on elastic wing (cantilever)
 - For aerodynamic loads and interference and aero: propeller(s) on rigid wing

Scaled model flight tests seldom used in rotorcraft development

Summary

- Much of technology needed for analysis of HALE nonlinear aeroelastic problems is available from rotorcraft methodologies
 - Consequence of similarities in operating environment and aerodynamic surface configuration
- Technology available theory developed, validated by comparison with test data, incorporated into rotorcraft codes
 - High subsonic to transonic rotor speed, low to moderate Reynolds number
 - Structural and aerodynamic models for high aspect-ratio wings and propeller blades
 - Dynamic and aerodynamic interaction of wing/airframe and propellers
 - Large deflections, arbitrary planform
 - Steady state flight, maneuvers and response to turbulence
 - Linearized state space models
- This technology has not been extensively applied to HALE configurations
 - Correlation with measured HALE performance and behavior required before can rely on tools